Our Food, Our Future

Can organic farming feed the world? A noted scientist argues that it can—and must.

By Donella H. Meadows Ph.D.


New research is showing that organic farming does not have to suffer lower yields, even in the early years. Consultants to German farms converting to organic practices have learned that by starting off with a nitrogen-rich leguminous cover crop instead of a grain crop, an initial drop in yield can be avoided.

A 1993 scientific comparison of farms in New Zealand found that biodynamic organic farms had better soil structure than that of neighboring farms that used conventional techniques. Their soil also had better aeration and drainage, was more easily tilled, and had higher organic matter and nitrogen content. And both types of farms were equally profitable.

Not all the evidence is so clear-cut. Some studies show that chemical yields outperform organic. What is amazing is that organic systems have performed as well as they have despite receiving almost no support from traditional agricultural research institutions, which overwhelmingly work within the chemical-farming paradigm.

What we can conclude after reviewing the evidence about organic yields is this: The expectation that they will always trail chemical yields is without merit. After a few years of practicing organic methods, and with very little scientific research to guide them, many farmers have come close to duplicating the high yields achieved by the world's most intensive chemical farmers, who have been supported by decades of government and academic research. At the same time, the organic methods have repaired much of the environmental damage caused by the chemicals.

But by merely comparing organic yields with conventional yields, we ignore much more central questions: What is the cost of not going organic? Can the intensive, polluting, soil-depleting methods of chemically dependent agriculture be counted on to feed the world's future generations? Or are they, like athletes pumped up on steroids, simply overperforming today only to be left exhausted and broken tomorrow? Are they sustainable? For how long and at what cost?

Is industrial agriculture the answer?
Over the past 50 years, food production has tripled. Can't we simply triple it again through new technology and more chemicals? That argument assumes that the ways we've increased food production in the past—through huge inputs of synthetic fertilizers and pesticides—can be expanded and improved and sustained. The evidence raises serious doubt about that.

One thing is certain: We are not likely to raise more food by plowing more land. As the World Resources Institute puts it: "Most high-quality agricultural land is already in production, and the environmental costs of converting remaining forest, grassland, and wetland habitats to cropland are well recognized…Much of the remaining soil is less productive and more fragile." In fact, over the past 30 years, global cultivated land area has gone down slightly. Farmland has been lost to development and degradation faster than new land has been brought into production.