Our Food, Our Future

Can organic farming feed the world? A noted scientist argues that it can—and must.

By Donella H. Meadows Ph.D.


When the TINA proponents argue that organic farming cannot compete with chemical farming, they make a dangerous assumption: that chemical farming can be sustained indefinitely. But if farmland and water supplies are further degraded, or if chemical inputs become ineffective, it is not clear that food production can even be maintained, much less forced higher.

The latest rung on the chemical-farming ladder is genetic engineering, which the biotechnology industry, in a multimillion-dollar publicity campaign, promises will feed the world by splicing together alien genes to produce superfoods that contain their own pesticides and herbicide resistance. But that technology is fraught with unknown risks and unanswered questions, and it violates the laws of nature.

Listen to the TINA argument long enough and you'll notice yet another assumption. The argument for genetic engineering and other means of intensifying food production implies that yields must be higher where they are already high. We need to get still more from those enormously productive Midwest acres. America must feed the world.

When you think about it, that's a curious and somewhat arrogant notion. Wouldn't it be far simpler and cheaper to raise the corn yield in Tanzania from ½ to 1 ton per acre than to raise it in Iowa from 4 to 5 tons? And Tanzania, not Iowa, is where more corn is needed.

The law of diminishing returns says there must be limits to how much grain or anything else can be coaxed from a given area. Where yields are low, some nutrients, a little timely weeding, and basic pest control can make a huge difference. But where yields are high already, pushing them still higher becomes increasingly difficult and eventually impossible.

It appears that intensive chemical-based agriculture is reaching that point. Average yields are still going up, but the highest yields are not. Kenneth S. Cassman, an agronomist at the University of Nebraska, notes that the corn yields on some of the Midwest's most productive acreage have not significantly improved in 25 years even though the investment in maize-breeding research has gone up fourfold.

There is an alternative to the TINA mandate of pushing nature harder, especially where it has already been pushed too hard. Back off a bit. Heal the soils, allow the waters to cleanse themselves, cut back the chronic surpluses that depress farm prices in the most productive places. If more food is needed, let the world feed the world. Increase yields where there is room for improvement. Empower local farmers to provide the food needed in their communities. Since the farmers in those places are often poor, help them use inputs that don't need to be bought and that don't harm soil and water and human health.

Which is precisely where organic farming comes in.

In what direction does our future lie?
Industrial agriculture relies on technology and expensive artificial inputs. It extracts high yields by depleting and degrading precious natural resources. It sells to people at ever-greater distances, requiring a costly and fuel-consuming distribution network, but it sells only to people who have money. It has not managed, for the roughly 100 years of its development, to feed the world. It is not cost-effective if all its costs, including those borne by farmers, neighbors, communities, and nature, are counted. Its highest yields are not likely to get higher, no matter how many more inputs are pumped onto them. In fact, they are unlikely to be sustained.

Organic agriculture follows an entirely different model. It builds nutrients and controls pests through natural methods that are largely free. Organic farmers purchase few expensive inputs; they recycle many biological wastes. They can produce high, though perhaps not the highest, yields, and those yields appear to be less affected by variable weather than those of industrial agriculture. Where organic farming is practiced, it is profitable. It regenerates soil and water resources. It can be adopted without requiring people to import fertilizers or pesticides or patented seed. It doesn't require farmers to don rubber suits and respirators to spray dangerous chemicals, or to employ labs to split genes.

Whether we ever feed the world depends more on our willingness to share, to care, and to commit to the health of ourselves, our neighbors, and our planet than it does on our ability to make breakthroughs in genetic engineering or pesticide chemistry. There Is No Alternative? Quite to the contrary, There Are Many Alternatives. And central to them all is a model of farming that replicates and respects nature, not one that tries to dominate it. Ending hunger is a totally possible, wildly desirable, and morally essential goal. Ending hunger forever means doing it in a way that restores and regenerates the health of soils, waters, natural ecosystems, farmers, and farming communities.

In the long term, industrial agriculture clearly cannot do the job. Organic farming can. And given the alternative, it must.